Вы не зашли.
Объявление
"Давайте только проявлять больше внимания, терпимости и уважения к чужому мнению — вот и всё." — Gennadius.
— О размещении изображений на форуме, О рекламе на форуме
#1 24 April 2014 16:03:43
- Crazy Zoologist
- Гость
Биохимия
Разговор с нейрохимиком о любви
Эмиль Фишер в молодости мечтал – о чем уже писалось – научиться готовить себе полностью синтетический завтрак. Аппетиты современных нейрохимиков куда больше: они хотят понять химизм таких процессов, как сон, обучение, выявить химические основы агрессивного поведения, страха, пытаются разложить на элементарные звенья механизмы столь сложных наших чувств, как любовь, милосердие, тоска по родине или близким. Опять оставим в стороне вопрос о том, как они собираются распорядиться добытыми знаниями (да и распоряжаться-то будут, видно, не сами ученые), остановимся лишь на некоторых наиболее интересных гипотезах, выдвинутых в последнее время. Речь, подчеркиваю, идет только о попытках объяснения сложных психических функций с позиций нейрохимии, о более или менее правдоподобных предположениях. Не все специалисты принимают их безоговорочно, и вполне может оказаться, что описываемые ниже схемы в действительности не существуют или организованы гораздо сложнее; я привожу их здесь скорее как иллюстрацию того, о чем думают современные исследователи.
Большая часть биорегуляторов, которым приписывается какая-то роль в управлении процессами высшей нервной деятельности, – пептиды, причем наряду со вновь открытыми соединениями эту функцию выполняют, как оказалось, и многие уже известные пептидные биорегуляторы, выполняют как бы «по совместительству», параллельно с известной ранее, например, гормональной. Исследования в этой области ведутся чрезвычайно интенсивно, полученные результаты весьма интересны (хотя часто не бесспорны); не желая их перечислять скороговоркой, предпочту отослать читателя к только что упомянутой книге Г.В. Никифоровича, где они освещены достаточно полно.
Среди прочих биологически активных веществ, участвующих в регуляции психических функций, следует упомянуть катехоламины – адреналин и норадреналин. Это соединения очень простой структуры: возьмите фенольное ядро, присоедините к нему две гидроксильные группы –OH и радикал –CHOH–CH2–NH2 и вы получите норадреналин; адреналин отличается от норадреналина лишней метильной группой –CH3. (В организме животных адреналин и образуется в результате метилирования норадреналина.)
Адреналин был выделен еще в начале нынешнего века из надпочечников как фактор, повышающий кровяное давление. Действует он очень избирательно: кровеносные сосуды кожи под его влиянием сужаются, сердца – расширяются, а мозга и легких – не реагируют на адреналин вовсе. Норадреналин повышает кровяное давление во всех сосудах.
Другая важная функция адреналина была рассмотрена выше достаточно подробно.
Катехоламины действуют и на гладкую мускулатуру других органов, принимают участие в процессах, происходящих в нервной клетке. С действием катехоламинов на гладкую мускулатуру и нервную ткань связано их участие в регуляции деятельности мозга. В комплексе эффект повышенной секреции катехоламинов проявляется в увеличении выносливости, большей активности, ускорении реакции, приливе оптимизма, веры в свои силы.
Здесь опять стоит вернуться к разговору о допингах.
Именно аналог адреналина – эфедрин нередко употреблялся хоккеистами, футболистами, представителями других игровых видов спорта; лет десять назад было несколько скандалов по этому поводу на крупных соревнованиях. Эфедрин (он отличается от адреналина наличием одной дополнительной метильной группы) более устойчив в организме. В последнее время, видимо, его не рискуют применять в качестве допинга: разработаны очень надежные методы контроля.
Психиатры обратили внимание на определенное сходство изменений психики, наступающих под действием катехоламинов, и симптомов, наблюдающихся при некоторых маниакальных состояниях. И точно, у таких больных была обнаружена повышенная секреция катехоламинов!
Лет уже двадцать длится массовое, в некоторых странах буквально повальное увлечение бегом трусцой. Врачи, приветствуя это явление в целом, обусловливают свое одобрение многочисленными оговорками: только если почки в порядке... не бегайте, если у вас болит то-то и то-то... и ни в коем случае, если у вас больные суставы (по американским данным они вполне здоровы только у 10...15 процентов населения). И помимо непременных назиданий об умеренности (появилось немало фанатиков, доводящих себя бегом до изнеможения), о необходимости всякий раз советоваться с врачом, вам напомнят о жертвах бега трусцой («джоггинга» по-английски) даже среди знаменитых в прошлом спортсменов, скончавшихся прямо на пробежке: австрийской теннисистке Карен Кранцке, западногерманском гребце Карле Адаме и нашем Владимире Куце – многократном рекордсмене мира в... беге на длинные дистанции.
Правда, чувствуется, что врачи говорят это скорее для перестраховки, что в целом бег трусцой они все же очень одобряют, и, конечно, их предостережения не следует воспринимать как антиджоггинговую пропаганду. Тем более что им могут напомнить: в списке жертв джоггинга не одни только спортсмены, но и, например, директор института кардиологии в Майами Роберт Саммерс, ученый с мировым именем.
Поклонники и пропагандисты джоггинга, как кажется, на предостережения врачей особого внимания не обращают. Впрочем, большая часть любителей просто бегают, по своему усмотрению выбирая продолжительность, трассу, время и никакой особой пропагандой не занимаются, разве что в беседе с приятелем выскажут что-то вроде того, что, мол, с весны, как возобновил пробежки, напрочь забыл о покалываниях в сердце и работоспособность явно улучшилась. С другой стороны, как и в любом деле, есть и фанатики, утверждающие (не всегда бескорыстно), что джоггинг – это и религия, и система политических ценностей, путь к подлинной духовной свободе и т.п. Вот некоторые из лозунгов, имевших хождение в различные годы: «Джоггинг – путь к внутренней гармонии!», «Это приятнее алкоголя и марихуаны!», «Чудесное самочувствие!», «Ощущение счастья всем телом!», «Джоггинг доставляет больше удовольствия, чем наркотики, кока-кола, деликатесный салат, некурение табака (курение табака) и секс».
Врачи, систематически исследовавшие большие группы любителей бега трусцой, действительно выявили среди них лиц, которых длительная пробежка приводит в состояние эйфории; сами джоггисты обратили на это внимание еще раньше и в своей среде называли таких бегунов «лосями».
Дальнейшее, по-видимому, угадать уже нетрудно. Биохимические исследования «лосей» показали: в ходе пробежки у них увеличивается секреция катехоламинов, что и дает им в конечном счете совокупность перечисленных выше приятных ощущений – большей активности, веры в свои силы, оптимизма и т.п.
Только ли в катехоламинах здесь дело, можно ли такое объяснение феномена «лосей» считать исчерпывающим, сказать не берусь, но, согласитесь, на первый взгляд оно выглядит вполне убедительным. Впрочем, и сам этот феномен – что-то не вполне повседневное, редкостное, в представлении большинства, быть может, не вполне нормальное. Возможно, и поэтому тоже его объяснение не кажется чересчур уже смелым вторжением науки в загадочную сферу наших чувств.
Намного больше претензий (и, очевидно, связанный с этим риск) у тех нейрохимиков, которые замахиваются на столь же приземленное объяснение тех сложных и прекрасных чувств, которые мы с детства привыкли рассматривать как священные, например, любви. Любви материнской, любви к Родине, любви женщины и мужчины.
Именно последний случай исследуется нейрохимиками и нейроэндокринологами особенно интенсивно; речь при этом идет не о физиологических аспектах (здесь эндокринология может объяснить довольно много, частично об этом писалось выше), а именно о психологических. Остановимся на описании модели чувств влюбленного, развиваемой американским исследователем Д. Либовицем. Она крайне проста.
Анализируя состояние влюбленности, Либовиц выделяет две фразы. Первую можно назвать фазой радужных надежд. Влюбленные охвачены эйфорией, в упоении строят планы своего будущего счастья (часто иллюзорные), испытывают огромный прилив энергии, оптимизма, исполнены различных положительных эмоций, веры в собственные силы...
Узнаете? Ну конечно же, это типичная картина, наблюдающаяся при повышении уровня катехоламинов. Именно их усиленная секреция, по Либовицу, и определяет основные особенности психики и поведения влюбленных в первой фазе.
Затем наступает фаза взаимной привязанности; характерная для первой фазы активность и предприимчивость сменяется стремлением к покою и тихому счастью в обществе друг друга. А разлука, даже непродолжительная, сопровождается душевными страданиями, приступами более или менее выраженной депрессии. Помните, у Пушкина:
...Как мало я любовь и сердце знал!
Часы идут, за ними дни проходят,
Но горестям отрады не приводят
И не несут забвения фиал.
О милая, повсюду ты со мною
Но я уныл и в тайне я грущу.
Блеснет ли день за синею горою,
Взойдет ли ночь с осеннею луною –
Я все тебя, прелестный друг, ищу...
Рассеянный сижу между друзьями,
Невнятен мне их шумный разговор,
Гляжу на них недвижными глазами,
Не узнает уж их мой хладный взор!
Либовицу не составляет никакого труда объяснить и это состояние. Во второй фазе секреция катехоламинов возвращается к норме, но мозг начинает усиленно продуцировать эндорфины – эндогенные опиаты, действующие на центр удовольствия. Причем их выделение индуцируется общением с любимым человеком. А если он надолго отлучается, прекращается и образование эндорфинов. Что в этом случае должно произойти с человеком, привыкшим на протяжении довольно длительного времени к повышенным их дозам?
То же, рассуждает Либовиц, что и с морфинистом, лишенным внезапно привычного зелья: депрессия, вялость, душевные муки...
«Вот и вся любовь». Эта несколько вульгарная поговорка из современного городского фольклора как нельзя лучше подходит в качестве резюме к нашему описанию теории Либовица. В самом деле, сначала временно усиливается образование катехоламинов, затем эндорфинов, всего-то и делов... Правда, остается вопрос: каким образом «включается» в первой фазе повышенное выделение именно катехоламинов, во второй – эндорфинов и (самое, пожалуй, неясное) почему в период разлуки уровень эндорфинов резко падает? Либовиц ограничивается лишь общими предположениями на сей счет.
Нельзя не отметить, что гипотеза, предложенная Либовицем для объяснения механизмов возникновения тоски влюбленного, пребывающего в разлуке со своей милой, на первый взгляд подходит и для истолкования с позиции нейрохимии страданий, причиненных другими видами разлук. Мало ли примеров острой, переходящей в депрессию тоски, наступающей при разлуке с матерью или очень хорошим другом? Даже собака при длительном отсутствии любимого хозяина впадает в меланхолию, теряет аппетит. Наконец, сходные ощущения мы испытываем не только при разлуке с близким человеком. Не ту же ли природу имеет и тоска по родине – большой или малой? По отчему дому, по родному заводу, по любимой работе вообще.
Аналогия здесь действительно просматривается, и некоторые авторы считают, что возникновение этих страданий также может быть объяснено на основании механизма, предложенного Либовицем. Правда, в приведенных случаях уровень эндорфинов до момента разлуки повышенным не был, откуда же тогда явления типа наркотического голода? Помните, Каштанка, горько тоскующая по своим хозяевам, с умилением вспоминает, как издевался над ней хозяйский сын: давал проглотить кусочек мяса, привязанный к нитке, а потом вытаскивал из желудка обратно?
Гипотеза Либовица проста, логична и очень трудно уязвима. В самом деле: чтобы проверить ее экспериментально, нужно измерить уровень эндорфинов у подопытного субъекта до того, как он влюбился, затем выждать начала второй фазы его чувства, опять измерить, затем разлучить на некоторое время с любимой или любимым и измерить еще раз.
Организовать все это совсем непросто, тем более что речь идет именно об эндорфинах. Их образование зависит от очень многих труднорегулируемых факторов, скорость его может резко меняться, так что для получения статистически достоверных результатов придется взять «в опыт», как говорят физиологи, очень большое количество людей.
Но это еще ничего, как-нибудь преодолели бы мы все эти трудности. Самое существенное препятствие – процедура определения уровня эндорфинов. Они образуются в мозге, здесь же почти целиком и расщепляются, так что любой надежный способ определения уровня эндорфинов у злосчастных влюбленных связан с необходимостью проделать небольшое отверстие в черепе. А на это, пожалуй, не согласятся даже самые бедовые добровольцы, фанатично преданные идеям научного прогресса.
Далее, если обсуждаемая гипотеза и верна, то она включает лишь отдельные, может быть, наиболее важные элементы химических механизмов, лежащих в основе развития описываемых изменений психики. Уже сейчас известно, например, что сходные явления депрессии связаны с изменением секреции ряда гормонов, в частности, тиреотропина и соматостатина.
И все же, согласитесь, возникает при чтении таких материалов чувство... ну, приниженности, что ли. Благороднейшие души и ярчайшие умы рода человеческого подарили нам сотни тысяч прекрасных страниц стихов и прозы, воспевающих одно из самых восхитительных и светлых человеческих чувств, и вот может оказаться, что для полного и исчерпывающего его описания достаточно двух-трех немудреных кинетических уравнений, характеризующих процессы образования и деградации каких-то там катехоламинов и эндорфинов!
* * *
Анатомия риска
Название этого раздела позаимствовано у профессора У.Д. Роу; это – заглавие его известной книги, вышедшей в 1977 году и содержащей изложение основных принципов так называемого «анализа риска». Этим термином определяется подход, позволяющий оценить количественно вероятность увеличения риска того или иного заболевания у людей (или групп населения), пребывающих в постоянном контакте с определенным токсикантом. Это очень сложная и трудоемкая процедура, а самое главное: получаемые с ее помощью оценки очень приблизительны; нередко результатом такого расчета оказывается интервал возможных значений, причем верхнее значение может отличаться от нижнего на несколько порядков.
К сожалению, выбора нет; кроме того, ясно, что даже самые ненадежные оценки могут быть полезными, если известна степень их ненадежности, а методы анализа риска, как правило, ее указывают.
Например, пусть получена оценка увеличения вероятности заболевания раком печени у людей, потребляющих в течение года водопроводную воду, в которой содержится такое-то вещество в такой-то концентрации. Эта оценка действительно не очень определенна: вероятность заболевания должна возрасти от тысячи до миллиона раз. Естественно, эта неточность никак не скажется на практических выводах: такое положение недопустимо, надо принимать меры к устранению рассматриваемого вещества. Соответственно, если прирост вероятности окажется исчезающе малым, можно существующую ситуацию признать удовлетворительной, хотя различия верхней и нижней оценок опять достигают порядков. Разумеется, возможны промежуточные результаты, когда нижняя граница оказывается еще приемлемой, верхняя – недопустимой. Что ж, и такие оценки небесполезны; вообще же случаи, когда исследователю приходится завершать проделанную работу выводом «я не знаю», вовсе не редкость в токсикологии. Нередки они, впрочем, и в других науках; возможно, токсикологи просто более осмотрительны.
Сложность процедуры получения оценок риска объясняется огромным количеством факторов, которые приходится учитывать в таких расчетах, и большим разнообразием условий. Скажем, чрезвычайно разнообразны по своему характеру могут быть уже источники загрязнения. Обычно различают точечные и рассеянные источники. Примером первых могут быть стоки какого-то предприятия, сбрасываемые в водоем в определенном месте, вторых – сельскохозяйственные угодья, обрабатываемые гербицидами, остатки которых поступают в грунтовые воды на огромной поверхности. Помимо этого, источники загрязнения классифицируются по происхождению (промышленные, коммерческие, бытовые, природные и др.) или характеру временной активности – постоянные и периодические (например, количество выхлопных газов, выбрасываемых автомобилями в атмосферу, имеет суточную периодичность, поступление в грунтовые воды остатков пестицидов – сезонную и т.п.)
Очень сложной проблемой является анализ путей распространения загрязнителей в окружающую среду; приходится считаться с постоянным их перемещением между воздушным бассейном, грунтовыми и поверхностными водами, почвой. Особенно трудным, но и очень важным элементом оказывается изучение так называемых биотических трофических цепей: путей перемещения токсиканта в результате жизнедеятельности различных организмов. Например, пестицид из почвы поглощается травой, вместе с травой попадает в организм коровы, оттуда с молоком – к человеку. Рассматривался далее три основных пути воздействия токсиканта на человека: поступление с водой или пищей, вдыхание или поглощение через кожу. Наконец, чрезвычайно разнообразны могут быть проявления вредного воздействия химических соединений на человека, до смертельного исхода включительно.
В этих условиях успешное применение методов анализа риска в очень большой степени зависит от точной постановки задачи, с тем чтобы избежать необходимости рассмотрения хотя бы части факторов второстепенных. К услугам специалистов по анализу риска обращаются почти всегда в связи с решением сугубо практических проблем: разработкой планов мероприятий по охране окружающей среды, решением вопроса о приемлемости новой технологии с точки зрения экологических критериев, наконец, для оценки безопасности новых товаров или продуктов.
Как выглядит в самых общих чертах процедура оценки риска? Первый этап: исследуются процессы поступления токсиканта в среду, его перемещения и удаления. Результатом расчетов, почти всегда очень сложных, является оценка эффективной концентрации токсиканта в среде, непосредственно окружающей человека. Далее, зная количество ежедневно потребляемой им воды или вдыхаемого воздуха, можно рассчитать ежедневную дозу, получаемую в сутки.
На этих этапах могут применяться как экспериментальные, так и расчетные приемы; часто удается обойтись одним расчетом. Однако следующий этап: оценка степени риска на основании оценки суточной дозы, требует почти исключительно экспериментальной работы; на основании опытов на лабораторных животных устанавливается характер зависимости «доза – эффект». Это, пожалуй, самое ненадежное звено в процедуре анализа риска. Точнее, для лабораторных-то животных найти эти зависимости не так уж трудно, но возникает вопрос: каким образом они могут быть перенесены на человека? Простейший прием – пересчет дозы на массу тела (например, масса тела человека равна 2800 массам тел мышей, эта цифра и используется как пересчетный коэффициент при перенесении «мышиной» зависимости «доза – эффект» на человека). Такой прием, однако, вызывает многие возражения.
Предложены и другие способы – скажем, при оценке риска заболевания раком предпочитают пользоваться отношением «внутренних поверхностей» (легких, кишечника, желудка). Отмечу, что в этом случае коэффициент пересчета мышиных доз к эквивалентным человеческим примерно на порядок меньше; вследствие этого оценки границ определенного уровня риска оказываются заниженными (на жаргоне специалистов, «более консервативными»), по сравнению с полученными пересчетами по массе.
В простейшем случае зависимость «доза – эффект» предполагается линейной, то есть увеличение степени риска считается пропорциональным дозе; тогда на основании данных лабораторных исследований следует просто оценить коэффициент такой пропорциональности («коэффициент единичного риска»).
Проиллюстрируем ход получения оценки степени риска примером, позаимствованным у американского исследователя Дж. Фикселя.
Предположим, в некотором помещении в воздух попадает формальдегид. Ситуация более чем правдоподобная, если учесть, что это соединение широко применяется и в промышленности, и в лабораторной практике, да и в быту. Зная количество поступающего ежечасно формальдегида, условия воздухообмена, вентиляции и т.д., можно рассчитать эффективную концентрацию его в зоне, где находятся люди. Можно, впрочем, измерить экспериментально. Итак, эффективная концентрация нам известна; пусть она составляет, к примеру, 10 микрограммов в одном кубическом метре воздуха. Человек в среднем вдыхает в течение суток около 20 кубометров воздуха; полагая, что весь формальдегид оседает у него в легких (что в высшей степени правдоподобно, поскольку это довольно агрессивное соединение), ежедневная доза формальдегида для индивидуума, пребывающего в рассматриваемом помещении, 0,2 миллиграмма. Лабораторные исследования позволили оценить коэффициент единичного риска для формальдегида: он составил 0,0003 на каждый ежедневно поглощаемый миллиграмм. Это следует понимать таким образом, что для человека, вдыхающего ежедневно один миллиграмм формальдегида, риск заболеть раком на протяжении оставшейся жизни на 0,03 процента выше, чем если бы формальдегида в окружающей его атмосфере не было вовсе.
В рассматриваемом же случае это повышение составит 0,2×0,03 = 0,0006 процента. Иными словами, если общая численность населения, подверженного действию указанной концентрации формальдегида, составит 2 миллиона, можно ожидать, что по этой причине дополнительно заболеют раком 120 человек. Или, полагая среднюю продолжительность жизни в этой группе равной 60 годам – 2 человека ежегодно.
Возникает опять вопрос: ну ладно, получили мы оценку риска, что же с ней делать дальше? Мало это или много: два человека в год в двухмиллионной группе населения?
Подходы к этой проблеме могут быть разные. Подход чисто академический требует сначала получения еще одной оценки: погрешности определения заболеваемости раком в контроле, в отсутствие формальдегида. Естественно, что из года в год эта цифра не воспроизводится с абсолютной точностью из-за различных случайных обстоятельств. Если такие колебания значительно превышают полученную оценку – 2 человека в год, – риск следует признать несущественным. Иными словами, представим себе, что некто проводит обработку многолетних данных о заболеваемости в двух группах: подверженной и не подверженной действию упомянутой концентрации формальдегида. Если среднемноголетние величины различаются на 2, а точность оценки каждой из них составила, скажем, 50 – полученное различие по всем канонам математической обработки данных следует признать недостоверным и приписать случайным обстоятельствам. Наоборот, при высокой точности оценок, например, погрешность составляет всего 0,1 (что, конечно, абсолютно нереально для рассмотрения численности групп – 2 миллиона) – различие в 2 человека в год следует признать достоверным.
Такой подход представился бы очевидным многим естествоиспытателям, очень привычный для них прием. Дело, однако, в том, что строго говоря, критерий статистической достоверности разности двух средних величин не позволяет сделать однозначное заключение «достоверна – недостоверна», а лишь получить оценку вероятности достоверности такой разницы. В различных группах исследователей принята негласная конвенция, согласно которой достоверной эта разница считается в том случае, если соответствующая вероятность окажется выше 0,99, или 0,95, или 0,9, то есть опять же величины, устанавливаемой произвольно. Иными словами, применение стандартных статистических критериев не освобождает нас от принятия волевого, по сути, решения о том, считать ли полученную оценку существенной или нет; при этом лишь сужаются границы рассматриваемого диапазона и исключается возможность грубых ошибок.
Подход другой, рафинированно-гуманитарный:
– Бесчеловечна и даже кощунственна сама постановка вопроса: два лишних раковых больных ежегодно – много это или мало? Да даже один дополнительный случай за сто лет – уже много, недопустимо много! Речь ведь идет о человеке, о чьей-то конкретной судьбе, чьем-то горе! Для нас приемлем лишь один критерий – всякий риск должен быть полностью исключен!
Сердцем любой из нас, бесспорно, согласится с этим утверждением. Увы, жизнь всегда сопряжена с риском (существует и более категорическое утверждение: «Жить вредно»). Любой плод цивилизации привносит в нашу жизнь дополнительный элемент риска; можно, например, сломать ногу, поскользнувшись в ванне. Но ведь отсутствие ванны в квартире представляет гораздо большую потенциальную опасность для здоровья. Бывали случаи, когда прохожему на голову падал с высоты пятого этажа кусок штукатурки, и никто в связи с этим не предлагал запретить многоэтажное строительство; ежедневно получают увечья и даже гибнут в автомобильных катастрофах десятки или сотни людей, но никто не предлагает запретить автомобили. Хотя это, несомненно, было бы единственным радикальным действием.
Так вот, еще один способ составить суждение о масштабах дополнительного риска, обусловленного присутствием в среде какого-либо токсиканта, – это сопоставить полученную оценку с цифрой, соответствующей какому-нибудь хорошо известному фактору риска. Чаще всего это именно автодорожные происшествия, иногда – курение или алкоголь. Полученные цифры приобретают некоторую наглядность, но и только. Помню, будучи еще в классе третьем или четвертом, я прочел в газете, что американцы потеряли в ходе второй мировой войны меньше людей, чем за тот же период в автомобильных катастрофах. Это говорилось с неодобрением, я только не сразу понял, что же осуждается – недостаточное участие США в войне или хаос на американских автодорогах?
* * *
Биологически активные
Станислав ГАЛАКТИОНОВ
http://n-t.ru/ri/ga/ba.htm
#2 20 November 2017 20:25:59
- Crazy Zoologist
- Гость
Re: Биохимия
Почему глюкозу также называют виноградным сахаром? Она же далеко не только в винограде содержится.
#3 23 December 2017 09:48:11
- Miracinonyx
- Любитель животных
- Зарегистрирован: 05 December 2006
- Сообщений: 19226
Re: Биохимия
Потому что в винограде ее доля по отношению к фруктозе особенно велика.
Где у нас тема о строении, биохимии и физиологии нервной системы?
Важнейший топик был бы.
Переименую тему, Атрокс, если не против?
Твоя стартовая подтема - биохимия любви - это как раз о работе ЦНС.
Вот интереснейший цикл лекций
Так и называется - "Биохимия мозга"
https://www.youtube.com/watch?v=zn1eexH … mp;index=6
Неактивен