Вы не зашли.
Объявление
"Давайте только проявлять больше внимания, терпимости и уважения к чужому мнению — вот и всё." — Gennadius.
— О размещении изображений на форуме, О рекламе на форуме
#1 14 March 2010 14:52:52
- Crazy Zoologist
- Гость
Мраморная кошка (Pardofelis marmorata)
Решил их объединить в одну тему, так как леопардовых кошек несколько, а мраморных - всего одна и это крайне интересный вид.
Инфа о суматранской и мраморной кошке - http://library.sandiegozoo.org/zoopubs/zp411.pdf
Superficially, the marbled cat looks like a smaller version of the clouded leopard. The ecology of the two species is very similar. Although both are closely related to the large or Panthera cats, the face of the marbled cat is more reminiscent of a small cat than is that of the clouded leopard. The tail of the smaller cat is far more bushy.
Thick and soft, the fur of the marbled cat is brownish-yellow, covered in large blotches which are paler in their centres and margined with black. There are black spots on the limbs and some black lines on the head and neck. Interrupted bands run from the inner corner of each eye over the head. Cheek stripes mark the face. Dull black on the upper side, the tail is spotted and tipped with black. It is long, about three-quarters of the body length, a fact which appears to confirm the arboreal habits of this species. Long tails are used as a counterbalance when climbing. Black with grey median bars, the ears are short and rounded.
The cat in the picture was photographed in the forest of Indonesia in 1991. This is thought to be the first photograph of a wild marbled cat not taken using an automatically triggered camera.
Unusually in the felids, the eye socket is surrounded by a complete bony ring. The pupils are ovoid, typical of the small, Felis cats. The marbled cat’s skull is broad, and like that of the cheetah, it is shorter and more rounded than in most of the other cats. The anterior upper premolar is absent or vestigial.
Slightly larger than a domestic cat, the marbled cat is considered to be the Asian ecological equivalent of the margay.
Quite different in overall appearance from other cats, the marbled cat has been separated into an unique genus by some authors. The validity of this status has been confirmed by studies of karyotype and blood serum albumin. Pending an acceptable taxonomy for the family as a whole, it is here retained in the genus Felis
Two subspecies are described: F. (P.) m. marmorata and F. (P.) m. charltoni
Too little is known of the Marbled Cat for any reliable statements to be made about its habitat requirements. It has been found in tropical forests from Nepal through southeast Asia to Borneo and Sumatra, but its presence in parts of the area is known only from single observations. It is thought to spend a lot of its time in trees where it is difficult to see and it may be more widely distributed than is at present known.
P. m. marmorata is the southern subspecies from Malaysia and Borneo.
The map shows the presently known distribution of Marbled Cats in grey.
The map is based on information in the Wild Cats Status Survey and Conservation Action Plan published by the IUCN/SSC Cat Specialist Group in 1996. See our Books page for more details.
Согласно этой инфе мраморная кошка близкая родственница пантер, такая инфа как-то уже мелькала, но это не правда.
Placed with the Asiatic Golden Cat and Borneo Bay Cat in Pardofelis by Johnson et al. (2006) and Eizirik et al. (submitted), representing one of the earliest felid radiations (O'Brien and Johnson 2007). Although these genetic analyses conclude the Marbled Cat is not a close relative of Neofelis, previously it had been considered so on the basis of morphological similarities including its blotchy coat pattern, broad feet, and elongated tail and canines (Groves 1982, Corbett and Hill 1993).
#2 16 March 2010 12:49:55
- Crazy Zoologist
- Гость
Re: Мраморная кошка (Pardofelis marmorata)
Как вы считаете, амурский кот - отдельный вид?
#3 16 March 2010 17:54:10
- Unenlagia
- Администратор
- Откуда: Серпухов
- Зарегистрирован: 04 November 2008
- Сообщений: 4591
Re: Мраморная кошка (Pardofelis marmorata)
Думаю, что более конкретно на этот вопрос ответил бы ДНК анализ. А подобные анатомические особенности вполне вписываются и во внутривидовые. Кстати у амурского кота самый северный ареал обитания (если рассматривать как подвид бенгальского)? Отчасти может поэтому такие выделяющиеся признаки в фенотипе?
Не волим змајеве, али чини ми се да су ме воле!
Неактивен
#4 16 March 2010 17:56:56
- Crazy Zoologist
- Гость
Re: Мраморная кошка (Pardofelis marmorata)
Да, он самый северный.
#5 11 July 2010 21:13:39
- Crazy Zoologist
- Гость
Re: Мраморная кошка (Pardofelis marmorata)
Господа модеры! Огромная просьба переименовать эту тему просто в "Мраморные кошки", так как про леопардовых кошек есть более обширная и старая тема. Так что про них лучше писать туда, а здесь про мраморных.
Переименуйте пожалуйста.
#6 26 September 2010 11:15:38
- Crazy Zoologist
- Гость
Re: Мраморная кошка (Pardofelis marmorata)
Модераторы! Переименуйте тему просто в "Мраморные кошки", так как про леопардовых уже есть тема.
А вот фотки:
Существует лишь три вида кошачьих которых можно назвать полудревесными - дымчатые леопард, мраморная кошка и маргай.
#7 24 November 2010 21:16:58
- Crazy Zoologist
- Гость
Re: Мраморная кошка (Pardofelis marmorata)
The physical appearance of marbled cats is often compared to that of their close relative, clouded leopards (Neofelis nebulosa). They are close in size to house cats (Felis catus), but are longer and more slender. Young are mottled brown until they get their adult markings at about 4 months old. The fur is full and soft with widely variable markings. The base color is brownish yellow and the coat is covered in large blotches which are paler in their centers and outlined in black. Large broken blotches occur on the flanks and blackish lines occur on the head, neck, and back. These patterns tend to be smaller than in clouded leopards and they merge together resembling marble (hence the name marbled cat). Interrupted bands run from the corner of each eye over the head. The ears are short and rounded and are black with grey bars marking them. There is a white or buff spot on the back of each ear. The chin and upper lip are also white or buff in color. The tail is spotted and tipped with black, and about three quarters of the body length. Head and body length ranges from 45 to 61 cm. Height at shoulder averages 28 cm and tail length is 35 to 55 cm. Marbled cats have relatively large feet with very large heel pads. They have unmistakably large canines for cats of their size. The skull is high and rounded and wide across the zygomata. The eye socket is surrounded by a complete bony ring, unusual among felids. The occipital area is wide with low crests and the sagittal crest is quite small. The anterior upper pre-molar is absent or vestigial. There are 3 generally recognized subspecies, Pardofelis marmorata marmorata, Pardofelis marmorata charltoni, and Pardofelis marmorata longicaudata. (Arkive, 2009; Pocock and F.R.S., 1939; Postanowicz and Lioncrusher, 2008; Sunquist and Sunquist, 2002)
#8 26 November 2010 03:58:47
- Crazy Zoologist
- Гость
Re: Мраморная кошка (Pardofelis marmorata)
ВОт теперь в этой теме можно говорить исклчительно об этом интереснейшем виде кошачьих, филогенетический анализ которого ставит под сомнение состоятельность современной систематики кошачьих.
Если кому-то интересно могу скинуть сюда материал по генетических связях этих кошек с пантерами.
#9 26 November 2010 08:17:24
- irbis1983
- Любитель зоологии
- Откуда: Екатеринбург
- Зарегистрирован: 14 November 2010
- Сообщений: 1127
Re: Мраморная кошка (Pardofelis marmorata)
Артем я думаю можно это очень интересно!
Смотри на мир шире чем он есть в твоих глазах
Неактивен
#10 26 November 2010 09:02:24
- Crazy Zoologist
- Гость
Re: Мраморная кошка (Pardofelis marmorata)
The cytogenetics of eight Felidae species in Thailand were investigated by the colchicines-hypotonic fixation-air drying technique followed by a conventional technique. All species studied have an identical number of 38 diploid chromosomes, indicating a close genetic relationship among species. At a deep study level, the genetic relationships of eight Felidae species were accessed by the AFLP method. Blood samples were collected from sources locating in their original regions for DNA extraction. With ten successful primer combinations, a total of 4208 scorable bands were generated. Of these bands, 18.91% are polymorphic. Percentages of Polymorphic Bands (PPB) for each primer combination range from 15.00 to 23.59%. The generating bands were used for dendrogram construction. The average genetic similarity values among all Felidae species are 68.20% (between Panthera tigris and Neofelis nebulosa) to 85.53% (between Prionailurus bengalensis and Prionailurus viverrinus). The dendrogram shows that the eight Felidae species were clustered together and the subfamily Pantherinae and Felinae with Neofelis nebulosa are distinguished. The Felinae, Prionailurus bengalensis, Prionailurus viverrinus, Catopuma temminckii, Felis chaus, Pardofelis marmorata and Neofelis nebulosa were clustered together with 91% bootstrap support and the Pantherinae, Panthera pardus is clustered with Panthera tigris with 92% bootstrap support. In summary, the ten successful primer combinations can be used to determine genetic differences among eight Thailand Felidae species.
INTRODUCTION
All members of Felidae were considered from major population in Appendix I and II of CITES and on the IUCN Red list of threatened, endangered and extinct species (Baillie et al., 2004). Thailand has many charismatic felid species in the world, including tiger (Panthera tigris), leopard (Panthera pardus), clouded leopard (Neofelis nebulosa), asian leopard cat (Prionailurus bengalensis), fishing cat (Prionailurus viverrinus), flat-headed cat (Prionailurus planiceps), asian golden cat (Catopuma temminckii), jungle cat (Felis chaus) and marbled cat (Pardofelis marmorata). Nine species of Felidae in Thailand can be divided into two subfamilies, Felinae and Pantherinae, based on morphological classification (Wilson and Reeder, 2006). Habitat loss has occurred violently throughout Southeast Asia over the past 20 years and these felid species are vulnerable to population pressures and habitat fragmentation. Forest destruction has negatively affected on wild animals such as Felidae. It reduces habitat for wild animals and causes population fragmentation due to the loss of genetic heterogeneity and thus they become vulnerable to environmental change and risk extinction.
Molecular genetic data for Felidae in Thailand, such as genetic relationships, is directly needed for conservation. The phylogenetic relationships among the Felidae have been addressed by several studies that employed both morphological and molecular techniques. Early efforts included comparative karyology (Modi and O’Brien, 1988; Wurster-Hill and Centerwall, 1982), cross-species chromosome painting (Tian et al., 2004), the genomic occurrence of two felid endogenous retroviruses (Benveniste and Todaro, 1974; Benveniste et al., 1975; Reeves and O’Brien, 1984), albumin immunological distance (Collier and O’Brien, 1985), comparative morphology (Salles, 1992), allozyme electrophoresis (O’Brien et al., 1987; Pecon-Slattery et al., 1994) and two-dimensional protein electrophoresis (Pecon-Slattery et al., 1994). More recently, efforts to resolve phylogenetic relationships have focused on the nuclear DNA sequence (Flynn et al., 2005; Sato et al., 2006; Zhang et al., 2006) and mitochondrial genome (Janczewski et al., 1995; Johnson et al., 1996; Lopez et al., 1994; Uphyrkina et al., 2002; Johnson et al., 2004; Flynn et al., 2005; Koepfli et al., 2006). However, few analyses have included information from Amplified Fragment-Length Polymorphism (AFLP).
AFLP has become a popular marker technique in genetic relationships because it combines restriction digestion and amplification of DNA fragments, with no prior knowledge about the target genome required (Vos et al., 1995). Abundant polymorphism and reproducibility have been proved to be advantages of the AFLP technique (Pejic et al., 1998; Powell et al., 1996; Russell et al., 1997). The high frequency of identifiable polymorphic AFLP markers, coupled with their reproducibility, make this technique an attractive tool for detecting polymorphism and determining genetic relationships (Gupta et al., 1999). Moreover, the genetic relationships within Felidae in Thailand have never been addressed using AFLP analysis.
In this study we investigated the cytogenetics data and AFLP was applied to estimate genetic relationships of eight Felidae species in Thailand, without Prionailurus planiceps because of lack of sample.
MATERIALS AND METHODS
Sample collection: Blood samples of Prionailurus bengalensis, Prionailurus viverrinus, Catopuma temminckii, Felis chaus, Pardofelis marmorata, Neofelis nebulosa, Panthera tigris and Panthera pardus were taken from sources locating in their original regions for DNA extraction as shown in Table 1 in 2003-2004. AFLP fingerprints were done at Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand in 2004-2006. As both morphological and molecular evidence place the family Viverridae as a successive sister-group to the Felidae (Mattern and McLennan, 2000), so the Viverridae, Paguma larvata (Masked-palm civet) was chosen as an outgroup in our analysis.
Cytogenetic analysis: The cultured cells were examined by the colchicines-hypotonic fixation-air drying technique followed by a conventional technique (Tanomtong et al., 2005). Chromosomal checks were performed with 20 cells of each individual by light microscopy.
DNA extraction: Genomic DNA was isolated from blood samples using protinase K digestion and treatment with phenol/chloroform (Sambrook et al., 1989). The quality and quantity of extracted DNA was checked by 0.8% agarose gel electrophoresis and spectrophotometry.
AFLP procedure: The procedure of the AFLP method (Vos et al., 1995) was performed according to the protocol of the kit (AFLPR Analysis System I, Invitrogen, USA).
After adaptor ligation and preselective amplification, selective amplification was conducted with 24 primer combinations and 10 primer combinations: EcoRI-AAC/MseI-CAA, EcoRI-AAC/MseI-CTG, EcoRI-AAC/MseI-CTT, EcoRI-AAG/MseI-CAA, EcoRI-ACA/ MseI-CAG, EcoRI-ACA/ MseI-CAT, EcoRI-ACA/ MseI-CTA, EcoRI-ACA/ MseI-CTC, EcoRI-ACA/ MseI-CTG and EcoRI-ACA/ MseI-CTT were successful. The PCR products amplified with different primer combinations were loaded onto 6.0% denaturing polyacrylamide gels and electrophoresed for 3 h and detected by Silver QuestTM Silver Staining Kit (Invitrogen, USA).
Data analysis: The AFLP bands were visually scored as either present (1) or absent (0) for each accession and each primer combination without band intensity consideration. With the 0/1 data, a pair-wise genetic distance value was generated using Pearson correlation coefficients and these values were then converted to a genetic distance matrix. Based on the genetic distance matrix, cluster analyses were performed and the corresponding dendrogram was constructed for Felidae using arithmetic means analysis (UPGMA). Unbiased measures of genetic similarity index (S) were also calculated between each pair of the species. All these analyses were done by the FingerprintingTM II Software (BIO-RAD, USA).
RESULTS
Results from lymphocyte culture of whole blood and conventional staining of the eight Felidae species, namely Prionailurus bengalensis, Prionailurus viverrinus, Catopuma temminckii, Felis chaus, Pardofelis marmorata, Neofelis nebulosa, Panthera tigris and Panthera pardus indicate that all species have an identical number of 38 diploid chromosomes (2n) consisting of 36 autosomes and 2 sex chromosomes. A representative chromosome of the eight Felidae species from a male of Prionailurus bengalensis is shown in Fig. 1.
A total of 4208 scorable bands, with sizes ranging from approximately 100-1500 base pairs (bp), were generated using ten EcoRI/MseI AFLP primer combinations with the entire collection of 18 Felidae individuals (Table 2). The number of scorable bands for each primer combination ranged from 320 to 518 (mean 420.8). Of these bands, 18.91% are polymorphic. Percentages of Polymorphic bands for each primer combination range from 15.00 to 23.59%. The most informative primer combination is the EcoRI-ACA/MseI-CTC pair, which produced the highest number of bands (518), while primer EcoRI-AAC/MseI-CTG combinations produced a minimum number of bands (320). Representative AFLP profiles of 18 Felidae individuals generated by the EcoRI-ACA/MseI-CTG primer combination are shown in Fig. 2.
The dendrogram constructed by the UPGMA method demonstrate that the 8 Felidae species are clustered together and the subfamilies Pantherinae and Felinae can be separated into two groups, whereas the outgroup Paguma larvata is segregated from the Felidae with a high bootstrap value (Fig. 3). In subfamily Felinae, Prionailurus bengalensis, Prionailurus viverrinus, Catopuma temminckii, Felis chaus and Pardofelis marmorata are clustered together with 91% bootstrap support attaching with Neofelis nebulosa of Pantherinae.
The average genetic similarity index (S) of 8 species ranged from 68.20% between Panthera tigris and Neofelis nebulosa to 85.53% between Prionailurus bengalensis and Prionailurus viverrinus (Table 3).
DISCUSSION
In the present study, the cytogenetic data demonstrate that eight Felidae species have an identical diploid chromosome number (2n = 38), agreeing with Hsu and Rearden (1965), Wurster-Hill and Benirschke (1968), Wurster-Hill (1969), Wurster-Hill and Gray (1973) and Pathak and Wurster-Hill (1977) and reflecting the close genetic relationships among species of Felidae. However, the chromosome number does not provide deep information of determination genetic relationships among Felidae, so the AFLP molecular marker was used to elucidate. AFLP markers were successfully used to survey genetic variation and relationships among eight species of Felidae in Thailand. The ability to determine genetic variation among species at molecular level is directly related to the number of polymorphisms detected and their reproducibility. From resulting bands from ten primer combinations, a low level of polymorphism was found among Felidae species agreeing with the identical chromosome number. Prionailurus viverrinus is very closely related to Prionailurus bengalensis based on the highest S value, 85.53%, while the lowest S value is between Panthera tigris and Neofelis nebulosa. The S values between individuals in a species were generally high (>80%) (data not shown).
The dendrogram shows that 8 species of Felidae are separated into two groups, subfamilies Pantherinae and Felinae which includes Neofelis nebulosa possessing a relatively high S value to Felinae species than to other Pantherinae, which is contrary to morphological classification, but agree with the shape and size according to Felinae. The separation of Felidae into two groups of big cats (Pantherinae) and small cats (Felinae) is generally supported by most studies. A clear size dichotomy does seem to exist in Felidae (Bininda-Emonds et al., 2001). Neofelis nebulosa which is the smallest of the big cats with a body size of 16-23 kg (Mattern and McLennan, 2000) and the shape of a small cat has teeth and skull structure which is clearly that of a Pantherinae (Postanowicz, 2006). Support for monophyletic groups composed of Pantherinae species is abundant from morphological characters (Neff, 1982; Peters and Hast, 1994; Salles, 1992).
Based on present study, we found a close relationship between Pardofelis marmorata and Neofelis nebulosa with high S value according to the phylogenetic tree recently constructed by Bininda-Emonds et al. (1999) and Ortolani (1999). The dendrogram shows that Catopuma temminckii has a stronger genetic relationship to Prionailurus bengalensis and Prionailurus viverrinus than Felis chaus, while Bininda-Emonds et al. (1999), Mattern and McLennan (2000) and Pecon-Slattery et al. (2004) reported that Felis chaus is more closely related to Prionailurus bengalensis and Prionailurus viverrinus than Catopuma temminckii. Present results agreeing with the phylogenetic relationships of Felidae based on analyses of combination 16S rRNA with NADH-5 mtDNA gene segments by Johnson and O’Brien (1997) and the phylogeny of body and tail color pattern, tail tip markings, eye contour and eye patches constructed by Ortolani (1999) shows that Catopuma temminckii comprises a sister species to Prionailurus bengalensis and Prionailurus viverrinus, while Felis chaus forms a sister species to these groups. However, Prionailurus bengalensis and Prionailurus viverrinus are classified to the Asian leopard cat group whereas Catopuma temminckii, only one species in Thailand, is classified to the Bay cat group (Johnson and O’Brien, 1997). In order to resolve the genetic relationships between the Asian leopard cat group and Catopuma temminckii properly, it is necessary to study a larger sample. However, large sample studies of wildlife are most difficult, causing the small sample number studied in our research, so that the method for producing reproducible bands and abundant polymorphisms like AFLP has been used. Thus, these results suggest that genetic analysis based on the AFLP technique has a good capacity for the study of genetic relationships, especially in Felidae. As AFLP analysis does not require prior genetic information for the taxa, this technique should be of value in genetic analysis of wild Felidae. Moreover, the ten successful primer combinations can be used to determine genetic differences among the eight Felidae species in Thailand.
ACKNOWLEDGMENTS
This study was supported by research fund from Thailand Zoological Park Organization under the Royal Patronage of His Majesty the King.
REFERENCES
Baillie, J.E.M., C. Hilton-Taylor and S.N. Stuart, 2004. 2004 IUCN Red List of Threatened Species. A Global Species Assessment. IUCN, Gland, Switzerland and Cambridge, UK., pp: 191.
Benveniste, R.E. and G.J. Todaro, 1974. Homology between type-C viruses of various species as determined by molecular hybridization. Proc. Nat. Acad. Sci. USA., 70: 3316-3320.
Benveniste, R.E., C.J. Sherr and G.J. Todaro, 1975. Evolution of type C viral genes: Origin of feline leukemia virus. Science, 190: 886-888.
Bininda-Emonds, O.R.P., D.M. Decker-Flum and J.L. Gittleman, 2001. The utility of chemical signals as phylogenetic characters: An example from the felidae. Biol. J. Linn. Soc., 72: 1-15.
Direct Link |
Bininda-Emonds, O.R.P., J.L. Gittleman and A. Purvis, 1999. Building large trees by combining phylogenetic information: A complete phylogeny of extant Carnivora (Mammalia). Biol. Rev., 74: 143-175.
Collier, G.E. and S.J. O’Brien, 1985. A molecular phylogeny of the felidae: Immunological distance. Evology, 39: 437-487.
Flynn, J.J., J.A. Finarelli, S. Zehr, J. Hsu and M.A. Nedbal, 2005. Molecular phylogeny of the Carnivora (Mammalia): Assessing the impact of increased sampling on resolving enigmatic relationships. Syst. Biol., 54: 317-337.
Gupta, P.K., R.K. Varshney, P.C. Sharma and B. Ramesh, 1999. Molecular markers and their applications in wheat breeding. Plant Breed., 118: 369-390.
Direct Link |
Hsu, T.C. and H.H. Rearden, 1965. Futher karyological studies on felidae. Chromosoma, 16: 365-371.
Janczewski, D.N., W.S. Modi, J.C. Stephens and S.J. O’Brien, 1995. Molecular evolution of mitochondrial 12S RNA and cytochrome b sequences in the pantherine lineage of felidae. Mol. Biol. Evol., 12: 690-707.
Johnson, W.E. and S.J. O’Brien, 1997. Phylogenetic reconstruction of the Felidae using 16SrRNA and NADH-5 mitochondrial genes. J. Mol. Evol., 44: 98-106.
Johnson, W.E., J.A. Godoy, F. Palomares, M. Delibes, M. Fernandes, E. Revilla and S.J. O’Brien, 2004. Phylogenetic and phylogeographic analysis of iberian lynx populations. J. Hered., 95: 19-28.
Direct Link |
Johnson, W.E., P.A. Dratch, J.S. Martenson and S.J. O’Brien, 1996. Resolution of recent radiations within three evolutionary lineages of felidae using mitochondrial restriction fragment length polymorphism variation. J. Mammal. Evol., 3: 97-120.
Koepfli, K., S.M. Jenks, E. Eizirik, T. Zahirpour, B.V. Valkenburgh and R.K. Wayne, 2006. Molecular systematics of the hyaenidae: Relationships of a relictual lineage resolved by a molecular supermatrix. Mol. Phylogenet. Evol., 38: 603-620.
Direct Link |
Lopez, J.V., N. Yuhki, R. Masuda, W. Modi and S.J. O’Brein, 1994. Numt, A recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. J. Mol. Evol., 39: 174-190.
Mattern, Y.M. and A.D. McLennan, 2000. Phylogeny and speciation of felids. Cladistics, 16: 232-253.
Modi, W.S. and S.J. O’Brien, 1988. Quantitative Cladistic Analysis of Chromosomal Banding Among Species in Three Order of Mammals: Hominoid Primates, Felids and Arvicolid Rodents. In: Chromosome Structure and Function, Gustafson, J.P. and R. Appels (Eds.). Needleman SB, Plenum Press, New York.
Neff, N.A., 1982. The Big Cats: The Paintings of Guy Coheleach. Abrams Press, New York.
O'Brien, S.J., G.E. Collier, R.E. Benveniste, W.G. Nash and A.K. Newman et al., 1987. Setting the Molecular Clock in Felidae: The Great Cats, Panthera. In: Tigers of the World, Tilson, R.L. and U.S. Seal (Eds.). Noyes, New Jersey, pp: 10-27.
Ortolani, A., 1999. Spots, stripes, tail tips and dark eyes: Predicting the function of carnivore colour patterns using the comparative method. Biol. J. Linn. Soc., 67: 433-476.
Pathak, S. and D.H. Wurster-Hill, 1977. The distribution of constitutive heterochropmatin in carnivores. Cytogenet. Cell Genet., 18: 245-254.
Pecon-Slattery, J., A.J. Pearks Wilkerson, W.J. Murphy and S.J. O’Brien, 2004. Phylogenetic assessment of introns and SINEs within the Y chromosome using the cat family felidae as a species tree. Mol. Biol. Evol., 21: 2299-2309.
Direct Link |
Pecon-Slattery, J., W.E. Johnson, D. Goldman and S.J. O’Brien, 1994. Phylogenetic reconstruction of South American felids defined by protein electrophoresis. J. Mol. Evol., 39: 296-305.
Pejic, I., P. Ajmone-Marsan, M. Morgante, V. Kozumplick, P. Castiglioni, G. Taramino and M. Motto, 1998. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor. Applied Genet., 97: 1248-1255.
Direct Link |
Peters, G. and M.H. Hast, 1994. Hyoid structure, laryngeal anatomy and vocalization in felids (Mammalia: Carnivora: Felidae). Z. Saugetierkunde, 59: 87-104.
Postanowicz, R., 2006. Online. Lioncrusher’s domain-clouded leopard. Retrieved on 24/09/06 from http://www.lioncrusher.com/animal.asp?animal=46.
Powell, W., M. Morgante, C. Andre, M. Hanafey, J. Vogel, S. Tingey and A. Rafalski, 1996. The comparison of RFLP, RAPD, AFLP and SSR (Microsatellite) markers for germplasm analysis. Mol. Breed., 2: 225-238.
CrossRef | Direct Link |
Reeves, R.H. and S.J. O’Brien, 1984. Molecular genetic characterization of the RD-114 gene family of endogenous feline retroviral sequences of the domestic cat. J. Virol., 52: 164-171.
Russell, J.R., J.D. Fuller, M. Macaulay, B.G. Hatz, A. Jahoor, W. Powell and R. Waugh, 1997. Direct comparison of level of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor. Applied Genet., 95: 714-722.
Direct Link |
Salles, L.O., 1992. Felid phylogenetics: Extant taxa and skull morphology (Felidae, Aeluroidae). Am. Mus. Novit., 3047: 1-67.
Sambrook, J., E.F. Fritsch and T.A. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. 2nd Edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA., ISBN-13: 9780879695774, pp: 21-51.
Sato, J.J., M. Wolsan, H. Sizuki, T.Hosoda, Y. Yamaguchi, K. Hiyama, M. Kobayashi and S. Minami, 2006. Evidence from nuclear DNA sequences sheds light on the phylogenetic relationships of pinnipedia: Single origin with affinity to musteloidea. Zool. Sci., 23: 125-146.
Direct Link |
Tanomtong, A., S. Khunsook, W. Kaensa and R. Banjongrat, 2005. Cytogenetics of pig-tailed macaque (Macaca nemestrina) by conventional staining. Naresuan University J., 13: 1-11.
Tian, Y., W. Nie, J. Wang, M.A. Ferguson-Smith and F. Yang, 2004. Chromosome evolution in bear: Reconstructing phylogenetic relationships by cross-species chromosome painting. Chromosome Res., 12: 55-63.
Direct Link |
Uphyrkina, O., D. Miquelle, H. Quigley, C. Driscoll and S.J. O’Brien, 2002. Conservation genetics of far eastern leopard (Panthera pardus orientalis). J. Hered., 93: 303-311.
Direct Link |
Vos, P., R. Hogers, M. Bleeker, M. Reijans and T.V.D. Lee et al., 1995. Hornes AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res., 23: 4407-4414.
CrossRef | PubMed | Direct Link |
Wilson, D.E. and D.M. Reeder, 2006. Mammal Species of the World. 3rd Edn., Johns Hopkins University Press, Baltimore.
Wurster, D.H., 1969. Cytogenetic and Phylogenetic Studies in Carnivora. In: Comparative Mammalian Cytogenetics, Benirschke, K. (Ed.). Springer–Verlag, New York.
Wurster-Hill, D.H. and C.W. Gray, 1973. Giemsa banding patterns in the chromosomes of the twelve species of cats (Felidae). Cytogenet. Cell Genet., 12: 377-379.
Wurster-Hill, D.H. and K. Benirschke, 1968. Comparative cytogenetic studies of the order carnivora. Chromosoma, 24: 336-382.
Wurster-Hill, D.H. and W.R. Centerwall, 1982. The interrelationships of chromosome banding patterns in canids, hyena and felids. Cytogenet. Cell. Genet., 34: 178-192.
Zhang, W., Z. Zhang, F. Shen, R. Hou, X. Lv and B. Yue, 2006. Highly conserved D-loop-like nuclear mitochondrial sequences (Numts) in tiger (Panthera tigris). J. Genet., 85: 107-116.
#11 02 December 2010 01:55:09
- Crazy Zoologist
- Гость
Re: Мраморная кошка (Pardofelis marmorata)
#12 26 July 2011 10:33:04
- Crazy Zoologist
- Гость
Re: Мраморная кошка (Pardofelis marmorata)
Редкие кадры:
http://www.youtube.com/watch?v=cCuh1ARouTY
#13 26 July 2011 15:01:07
- Николаки
- Любитель зоологии
- Откуда: Балашиха
- Зарегистрирован: 07 March 2010
- Сообщений: 856
Re: Мраморная кошка (Pardofelis marmorata)
Очень красивая кошечка!!! В зоопарках они есть?
Несмотря ни на что, жизнь продолжается, и это прекрасно!
Неактивен
#14 27 July 2011 16:39:40
- Crazy Zoologist
- Гость
Re: Мраморная кошка (Pardofelis marmorata)
Наверное есть. Не знаю.
Эта кошка один из трёх видов действительно полудревесных кошек (мраморная кошка, дым. леопард и маргай).
Мраморная кошка - эквивалент маргай в Старом Свете. И она судя по всему ближе к пантерам, чем к малым кошкам.
#15 15 December 2011 00:20:30
- зоотехник
- Модератор
- Откуда: Орловское Полесье
- Зарегистрирован: 08 February 2010
- Сообщений: 2809
Re: Мраморная кошка (Pardofelis marmorata)
ЧЕЛОВЕК - это звучит гордо! Обезьяна - перспективно!
Неактивен
#16 18 December 2011 15:52:02
- Theria
- Любопытный
- Зарегистрирован: 29 May 2011
- Сообщений: 20
Re: Мраморная кошка (Pardofelis marmorata)
Интересная кошечка, не знала про такую) Мне кажется, или ее окрас похож на окрас дымчатого леопарда? Может ли окрас у кошек говорить о степени родства?
Неактивен
#17 18 December 2011 16:10:07
- Crazy Zoologist
- Гость
Re: Мраморная кошка (Pardofelis marmorata)
Нет. Хотя иногда может говорить (ювенильный окрас львов и окрас леопарда).
Мраморная кошка "официально" в подсемействе малых кошек. Но последние исследования показали, что она довольно близка к пантерам. Так что современная систематика кошачьих на фоне этих исследований терпит крах.
#18 26 July 2012 15:49:54
- Crazy Zoologist
- Гость
Re: Мраморная кошка (Pardofelis marmorata)
Вот интересные данные:
Глазницы замкнуты.
Unusually in the felids, the eye socket is surrounded by a complete bony ring. The pupils are ovoid, typical of the small, Felis cats. The marbled cat’s skull is broad, and like that of the cheetah, it is shorter and more rounded than in most of the other cats. The anterior upper premolar is absent or vestigial. Slightly larger than a domestic cat, the marbled cat is considered to be the Asian ecological equivalent of the margay.
Аналогии с дымчатым леопардом:
One character which the marbled cat shares with the clouded leopard is very long canine teeth.
Родственные связи:
Genetic studies of this cats blood serum, shows that it shares an identical karyotype with Lynx, Panthera and Uncia, leaving this cats evolutionary history somewhat of a taxonomic puzzle. Perhaps, this little cat is similar in form to the forest ancestors of the big cats some 10 million years ago (Collier and O’Brien, 1985). However, it may have also diminished in size more recently due to competition with other big cats.
#19 17 August 2012 03:36:04
- Crazy Zoologist
- Гость
Re: Мраморная кошка (Pardofelis marmorata)
#20 09 September 2012 11:48:09
- Crazy Zoologist
- Гость
Re: Мраморная кошка (Pardofelis marmorata)
Господа, кошковеды! Читал много об этой кошке, но даже статью написать не могу, так как все очень запутано. Одни сближают ее с пантеринами, однако она по прежнему в фелинах. А в последнее время вообще катопум поместили в род Pardofelis.
У меня к вам один вопрос и одна просьба:
Нигде не нашел статьи об анатомии этой кошки. Интересно строение ее конечностей, аналогичны ли они с таковыми у маргая или нет? Есть ли у вас данные по этому поводу?
Как думаете, правильно ли азиатских золотистых кошек включать в один род с мраморной кошкой?
Полный бордак!
Отредактировано Кот (10 September 2012 05:15:04)
#21 25 September 2012 19:43:22
- Crazy Zoologist
- Гость
Re: Мраморная кошка (Pardofelis marmorata)
#22 31 December 2012 14:36:04
- Crazy Zoologist
- Гость
Re: Мраморная кошка (Pardofelis marmorata)
#23 01 February 2013 01:35:46
- Crazy Zoologist
- Гость
Re: Мраморная кошка (Pardofelis marmorata)
Мраморная кошка – с ДНК тигра
При взгляде на мраморную кошку создается впечатление, будто домашняя киса вышла погулять по лесу. Похожи они буквально во всем: одинакового роста и веса, только у мраморной кошки более длинный хвост, хорошо приспособленный к жизни на деревьях. Да и шкурка красивой раскраски, мраморного цвета, даже чем-то напоминает мех дымчатого леопарда. Так бы и считалась мраморная кошка родней домашних питомцев, если бы не природная любознательность людей. Ученые, проанализировав ДНК, установили, что мраморные кошки больше подходят ко львам и тиграм. Обитают эти животные по всей Юго-Восточной Азии и на островах Индонезии, в густых лесных массивах. Питаются различными грызунами, всевозможными птицами, не побрезгуют и ящерицами.
#24 13 January 2014 10:33:15
- Crazy Zoologist
- Гость
Re: Мраморная кошка (Pardofelis marmorata)
Genetic studies of this cats blood serum, shows that it shares an identical karyotype with Lynx, Panthera and Uncia, leaving this cats evolutionary history somewhat of a taxonomic puzzle. Perhaps, this little cat is similar in form to the forest ancestors of the big cats some 10 million years ago (Collier and O’Brien, 1985). However, it may have also diminished in size more recently due to competition with other big cats.
http://www.indiantiger.org/wild-cats/marbled-cat.html
Гугл-перевод:
Генетические исследования этой кошки сыворотке крови, показывает, что он разделяет идентичный кариотип с Lynx, Panthera и Uncia, оставляя эту кошек эволюционную историю своего рода таксономической головоломки. Возможно, эта маленькая кошка похожа по форме на лесных предков больших кошек около 10 миллионов лет назад (Collier и O'Brien, 1985). Тем не менее, это, возможно, также уменьшилась в размерах более в последнее время из-за конкуренции с другими крупными кошками.
На Борнео мраморные кошки ведут более наземный образ жизни. Почему - пока не ясно.
Diet: Marbled cats are carnivorous. The diet consists primarily of birds, but also includes squirrels, rats and other small rodents, lizards, insects, and frogs. Marbled cats hunt mostly in trees. In Borneo they may be more terrestrial and forage on the ground.
Unusually in the felids, the eye socket is surrounded by a complete bony ring. The pupils are ovoid, typical of the small, Felis cats. The marbled cat’s skull is broad, and like that of the cheetah, it is shorter and more rounded than in most of the other cats. The anterior upper premolar is absent or vestigial. Slightly larger than a domestic cat, the marbled cat is considered to be the Asian ecological equivalent of the margay.
#25 17 March 2014 19:40:55
- Crazy Zoologist
- Гость
Re: Мраморная кошка (Pardofelis marmorata)
О принадлежности мраморной кошки (Pardofelis marmorata) к большим кошкам в мире зоологов ведутся споры. Согласно традиционной точке зрения её относят к малым кошкам, однако появились предположения о её связи с большими кошками. Недавние молекулярно-генетические исследования говорят в пользу её близкого родства с родом катопум, из-за чего новейшие систематики вновь относят её к малым кошкам.